Hydrology and the Atmospheric Environment

A graduate student works on a mobile air-quality lab in Hawaii

Above: A graduate student advised by Mark Zondlo adjusts the settings on a mobile air quality monitoring unit, atop a zero-emissions car on the big island of Hawaii following the eruption of the Kilauea volcano.


 

A water molecule can travel long distances in its hydrologic cycle, from the top of the stratosphere to the depths of the oceans. Understanding how hydrologic and atmospheric processes interact to shape our environment remains a core challenge for environmental engineers.

Faculty in this department build sensors, apply satellite data, and develop sophisticated numerical simulations of earth systems. We then apply these techniques to understand everything from water transmissivity underground to atmospheric turbulence in wind farms and cities. At the center of our work is the vision that pushing the boundaries of fundamental scientific understanding is a precursor for rapidly improving our engineered systems, mitigating their impact on the natural environment, and making them more resilient to natural extremes. With this vision, we work to understand evaporation and transpiration at the land surface, the precursors of drought, flood and storm surge, the modulation of geophysical turbulence by surface temperature and roughness, the movement of air pollutants in cities and across continents, and the role of ecosystems in the hydrologic cycle.

Faculty

Elie Bou-Zeid
Environmental Fluid Mechanics & Turbulence, Boundary-Layer Meteorology, Urban Climatology & Hydrology, Wind Energy
Ian Bourg

Water at Interfaces, Clay Minerals, Nanogeochemistry, Groundwater Hydrology

Michael Celia
Groundwater Hydrology, Geological Sequestration of Carbon Dioxide, Modeling Multiphase Flow in Porous Media
Jürgen Hackl

Complex Infrastructure Systems, Network Analysis, Graph Learning, Risk & Resilience Analysis, Computational Modeling, Digital Twin

Ning Lin
Hurricane Hazards, Risk Analysis, Coastal Resilience, Climate Change Adaptation
Jyotirmoy Mandal

Optical metamaterials; heat mitigation and sensing, radiative transfer across nanoscales, built environments, and the atmosphere

Denise Mauzerall
Energy/air quality/water/climate nexus; Impacts of energy choices; Atmospheric chemistry modeling
Reed Maxwell
Hydrology, Understanding perturbations to the hydrologic cycle through observations and numerical models, Reactive transport, Scaling in watersheds, Coupled simulation and high-performance computing
Amilcare Porporato
Ecohydrology, Environmental Fluid Mechanics, Thermodynamics, Statistical Physics
Mark Zondlo
Atmospheric Chemistry and Composition Group